13. \(\mathbb{Z}_n \), the integers modulo \(n \)

Definition 1. Let \(S \) be a set and \(\sim \) an equivalence relation on \(S \). For \(a \in S \), we define the equivalence class \(\text{cl}(a) \) by

\[
\text{cl}(a) = \{ b \in S \mid b \sim a \}.
\]

So for example, if \(S \) is the set of all people and \(\sim \) is the relation defined by \(P \sim Q \) if \(P \) and \(Q \) have the same birthday, then there are 366 distinct equivalence classes, and that everyone is in one and only one equivalence class. In general, the equivalence classes of a set form a partition of the set \(S \), which means that every element is in one and only one equivalence class.

Exercise: Let \(S \) be a set and \(\sim \) an equivalence relation on \(S \). For \(a, b \in S \), prove that \(\text{cl}(a) = \text{cl}(b) \) if and only if \(a \sim b \).

Now, let’s return to the equivalence on the integers defined by congruence modulo \(n \). For \(n \geq 1 \) and \(a \in \mathbb{Z} \), let \(\text{cl}(a) \) denote the equivalence class of \(a \) under this equivalence relation. Instead of \(\text{cl}(a) \), more commonly this equivalence class is denoted \([a]_n\) and is called the **congruence class** of \(a \) modulo \(n \). Following the definition, we have

\[
[a]_n = \{ b \in \mathbb{Z} \mid b \equiv a \pmod{n} \}
= \{ b \in \mathbb{Z} \mid n \mid b - a \}
= \{ b \in \mathbb{Z} \mid b - a = qn \text{ for some } q \in \mathbb{Z} \}
= \{ b \in \mathbb{Z} \mid b = a + qn \text{ for some } q \in \mathbb{Z} \}
= \{ a + qn \mid q \in \mathbb{Z} \}
\]

So for instance, \([4]_9 = \{4 + 9q \mid q \in \mathbb{Z} \}\) and \([-100]_{15} = \{-100 + 15q \mid q \in \mathbb{Z} \}\).

Note by the Exercise above, \([a]_n = [b]_n\) if and only if \(a \equiv b \pmod{n} \). In particular, for any integer \(a \), \([a]_n = [r]_n\) where \(r = \text{ln}(a, n) \), since \(a \equiv r \pmod{n} \). Hence, every congruence class modulo \(n \) is equal to one (and only one) of \([0]_n, [1]_n, \ldots, [n-1]_n\). Since no two numbers between 0 and \(n - 1 \) are congruent modulo \(n \), we can also see that none of these equivalence classes are equal.

We now define the \(\mathbb{Z}_n \), the integers modulo \(n \), to be the set of all congruence classes modulo \(n \):

\[
\mathbb{Z}_n = \{ [a]_n \mid a \in \mathbb{Z} \}
= \{ [0]_n, [1]_n, \ldots, [n-1]_n \}.
\]

Notice that \(\mathbb{Z}_n \) is **not** a set of integers, but rather a **set of subsets of the integers**. For example, \(\mathbb{Z}_3 = \{ [0]_3, [1]_3, [2]_3 \} \) has exactly 3 elements. On the other hand, every integer is in one of the three classes, \([0]_3, [1]_3, \text{ or } [2]_3\), depending on its remainder upon dividing by 3.

Now we wish to define arithmetic operations on \(\mathbb{Z}_n \).

Let \([a]_n\) and \([b]_n\) be congruence classes modulo \(n \). We define addition of congruence classes as follows:

\[
[a]_n + [b]_n = [a + b]_n.
\]

We define multiplication of congruence classes similarly:

\[
[a]_n \cdot [b]_n = [ab]_n.
\]
Now, we have to be careful in making these definitions. To illustrate, let’s suppose \(n = 8 \). Consider the sum of \([10]_8\) and \([−17]_8\). According to the definition, our answer is \([10 + (−17)]_8 = [−7]_8\). However, there are many ways to write the same congruence class. For instance, \([10]_8 = [−6]_8\) and \([−17]_8 = [7]_8\). If we use these other ways of writing the same congruence classes, we get the sum to be \([−6 + 7] = [1]_8\). However, we want only one answer! So, we ask, is \([−7]_8 = [1]_8\)? The answer is yes, since \(−7 \equiv 1 \mod 8\). We want to make sure this happens every time. Similarly with multiplication.

Proposition 2. Let \(n \geq 1 \) and \(a, b, c, d \) be integers. Suppose \([a]_n = [b]_n\) and \([c]_n = [d]_n\). Then

1. \([a]_n + [c]_n = [b]_n + [d]_n\).
2. \([a]_n \cdot [c]_n = [b]_n \cdot [d]_n\).

Proof. For the first part, we have by assumption that \([a]_n = [b]_n\) and \([c]_n = [d]_n\). By the exercise above, we have that \(a \equiv b \mod n\) and \(c \equiv d \mod n\). By Proposition 3 on Worksheet #7, we have that \(a + c \equiv b + d \mod n\). Thus, \([a + c]_n = [b + d]_n\). By definition of addition of congruence classes, we have \([a]_n + [c]_n = [b]_n + [d]_n\). The second part is left as an exercise.

Exercise: Prove the second part of Proposition 2.

Next, we want to be sure that the rules for this ‘arithmetic’ satisfy certain basic properties:

Theorem 3. Let \(n \geq 1 \) be an integer and \(a, b, c \in \mathbb{Z} \). Then

1. \([a]_n + [b]_n = [b]_n + [a]_n\) (The commutative property of addition).
2. \(([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)\) (The associative property of addition).
3. \([a]_n + [0]_n = [a]_n\) (The existence of an additive identity).
4. \([a]_n + [−a]_n = [0]_n\) (The existence of additive inverses).
5. \([a]_n \cdot [b]_n = [b]_n \cdot [a]_n\) (The commutative property of multiplication).
6. \(([a]_n \cdot [b]_n) \cdot [c]_n = [a]_n \cdot ([b]_n \cdot [c]_n)\) (The associative property of multiplication).
7. \([a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n\) (The distributive property of multiplication over addition).
8. \([a]_n \cdot [1]_n = [a]_n\) (The existence of a multiplicative identity).

Proof. All of these follow by the definition of the arithmetic operations on congruence classes, along with the axioms for arithmetic on the integers. For example, let’s prove the distributive axiom:

\[
[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot [b + c]_n = [a(b + c)]_n = [ab + ac]_n = [ab]_n + [ac]_n = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n
\]

The other properties are proved similarly.
Exercise: Prove the associative property of addition (part (2) of Theorem 3).

Homework:

1. Write down the addition and multiplication tables for \(\mathbb{Z}_9 \).

2. Give an example of an integer \(n \geq 1 \) and \(a, b \in \mathbb{Z} \) such that \([a]_n \cdot [b]_n = [0]_n\) but \([a]_n \neq [0]_n\) and \([b]_n \neq [0]_n\).

3. Let \(p \) be a prime integer and \(a, b \in \mathbb{Z} \). Prove that if \([a]_p \cdot [b]_p = [0]_p\) then \([a]_p = [0]_p\) or \([b]_p = [0]_p\).

4. Let \(n \geq 1 \) and \(a \in \mathbb{Z} \). Prove that there exists an element \([b]_n \in \mathbb{Z}_n\) such that \([a]_n \cdot [b]_n = [1]_n\) if and only if \(\gcd(a, n) = 1 \).